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Abstract-This is a study of the axially symmetric torsion of a long elastic cylindrical bar which is
embedded in a layered elastic half space. The stress singularity factor at the embedded end of the bar is
estimated by an existing method, and its effects on the solution are investigated. Such effects are found to
be not so significant, especially for long bars and when the main concern is only on the torque-twist angle
relationship. Even for rather short bars, the results given by this study agree well with those by an existing
method, which is more rigorous but restrictive only to the case of an infinitely rigid bar.

1. INTRODUCTION
The main objective of this study is to develop a simple but efficient solution scheme for the
problem of the axially symmetric torsion of an clastic cylindrical bar partially embedded in a
layered elastic half space. The singularity factor for the shear stress along the base perimeter of
the bar is estimated first by Williams' method[I]. The problem of an infinitely rigid bar partially
embedded in a layered half space was solved by Luco[2]. Earlier, Freeman and Keer[3] solved
the case of an elastic bar welded to the free surface of a homogeneous half space. In 1970, Keer
and Freeman[4] solved the problem of a homogeneous half space and an elastic bar. The
embedded part of the bar in Ref.[4] is infinitely long, while the unembedded part is finite. The
problem of a homogeneous elastic half space containing an axially-loaded rigid bar was solved
by Luk and Keer[S] in 1979.

Following the scheme proposed by Muki and Sternberg[6] for the treatment of the problem
of an axially loaded rod partially embedded in an elastic half space, the system of the present
study depicted in Fig. 1 is decomposed into an extended half space and a fictitious bar as shown
in Figs. 2(a, b). Based on an appropriate compatibility condition between the two latter systems,
which is different from that used in Ref. [6], the problem is found to be governed by a Fredholm
integral equation of the second kind. The torque transfer and the torque-twist angle relationship
can be obtained numerically for various slenderness ratios of the bar and two ratios among
shear moduli involved.

2. AXISYMMETRIC TORSION OF ELASTIC HALF SPACE

For the axially symmetric torsion of an elastic half space, the most efficient coordinates to
be used are cylindrical coordinates T, 8 and z, with z normal to the free surface of the half
space. Due to the symmetry of the problem, functions involved are independent of 8 and the
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Fig. 1. Geometry of bar and embedding medium.
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Fig. 2. Composition of the problem.

only non-trivial equilibrium equation is [7]

(1)

where v is the displacement in (J direction, and the only displacement that remains nonzero.
The nonvanishing components of stress are (J'ez and (J'rlJ which are related to v through the
equations

(J'fJz == IL(aV/iJZ), (J're == IL(iJv/iJr- r-Iv) (2a,b)

where IL is the shear modulus of the medium.
The general solution to eqn 0) can be obtained by means of the technique of Hankel

transform with respect to the radial coordinate as proposed by Muki[8] for elastostatics.
Accordingly, the displacement v can be expressed as

(3)

where J I is the Bessel function of the first kind of the first order, and A and B are constants of
integration to be determined from appropriate boundary and continuity conditions.

For reasons of convenience, it is appropriate to non-dimensionalise the problem by defining
a, which denotes the radius of the embedded bar, as a unit of length.

3. ESTIMATION OF STRESS SINGULARITY FACTOR

It has been found by Luco[2], in the problem of torsion of a rigid cylindrical bar partially
embedded in a layered elastic half space as shown in Fig. t, that the shear stresses at the base
perimeter of the bar are in the following singular forms

(4a,b)

where k is the stress singularity factor in the range 0~ k < 1/2.
For the current problem of an elastic bar, the stress singularity factor can be taken as a

function k(l3h 130 where

{31 =ILIIIL2' {32 =ILI/1L3

in which ILl and IL3 are the shear moduli of the upper and lower layers of the half space
respectively, and IL2 of the elastic bar. The method of Williams[t] can be applied to estimate the
stress singularity by considering an analogous antiplane system, as shown in Fig. 3, consisting
of two quarter planes with shear moduli ILl and IL2 and a half plane with a shear modulus IL3'
Procedures similar to those of Ref. [4] will be used here. Adopting a reference coordinate
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Fig. 3. Geometry of analogous antiplane system for estimating stress singularity factor.

system as shown in the figure, the only non-trivial equilibrium equation becomes

(6)

where the subscript i denotes a domain 1, 2 or 3 in the material system (Fig. 3), and W is the
displacement in z direction and the only displacement that remains nonzero. The solution to
eqn (6) can be put in the form

Wier, 8) = rA[Ai sin (A8) +Bi cos (A8)] (7)

where A=(2k +1)/2, and Ai and Bj are arbitrary constants. The nonvanishing components of
stress, Uezi and Uzri, are related to Wi through the equations

The continuity conditions appropriate for the present problem are

(8a,b)

WI(r, 0) = W2(r, 0),

w2(r, 7T/2) = w3(r, 7T/2),

w3(r, 37T/2) =wl(r, 37T/2),

Uezl(r, 0) = uedr, 0)

Uedr,7T/2) = Uez3(r, 7T/2)

Uez3(r, 37T/2) =Uezl(r, 37T/2).

(9a,b)

(9c,d)

(ge,O

Substituting eqn (7) into eqns (9), in view of eqns (8), leads to a set of six homogeneous
equations. For non-trivial solution of the arbitrary constants AI to A3 and BI to B3, the
determinant of the coefficient matrix of this set of equations must be set to zero, i.e. after some
manipulations,

sin (AI) -sin (A.) cos (AI) -cos (AI)
/32 cos (AI) -cos (A.) -/32 sin (A\) sin (A\)

=0-/31 sin (3A.) sin (3A\) -cos (3A I) cos (3A\) (10)

- /31 cos (JA\) /31 cos (3A\) sin (3A\) - ~~ sin (3AI)
/32

where A. = (2k + 1)7T/4. The stress singularity factor k(/3h 132) is the smallest positive real root of
eqn (10) and less than 0.5. In general, a trial-and-error process has to be adopted to determine
such a root. For some values of 13. and 132, the stress singularity does not even exist.

For the case of an infinitely rigid bar (/3. =0), eqn (10) can be reduced into

. 3(2k + l)7T [. k -&...] 0
Sin 4 Sin 7T - I+ /32 = (tl)
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from which the stress singularity factor can be readily obtained as

k(O, (32) =1- arcsin 1 f32a , (0 ~ f32 ~ I)
r. +P2

Equation (l2a) agrees with the finding of Luco[2].
For a homogeneous half space «(32 = I), eqn (10) can be reduced to

(1 a)' 3(2k + 1)r. 0
-PI SIn 4 =

from which we get

(l2a)

(l2b)

(13)

(14)

Thus the stress singularity factor for the case of an elastic bar embedded in a homogeneous half
space is the same as that of an infinitely rigid bar embedded in a layered half spaCe with {32 ~ 1.

4. FUNDAMENTAL SOLUTION

At this stage, it is appropriate to consider the case of a shearing traction equivalent to a unit
torque acting over a circular area of radius a in the interior of a layered elastic half space at
z = z' as shown in Fig. 4. This solution, which would serve as the fundamental solution
necessary for solving the main problem, can be approached by considering the half space as
divided into three domains, namely, domain I (0 ~ z~ z'), domain 2 (z' ~ z~ h) and domain 3
(h ~ z < 00) as shown. The solution of each domain is in the form of eqn (3), containing two
constants of integration Ai and Bj • The subscript i is used to denote a domain number.
However, the constant A3 should vanish to guarantee the boundedness of the solution as z
approaches infinity. Thus there are five constants to be determined from the following boundary
and continuity conditions:

0'8Z1(r, 0) = 0

vI(r, z') = v2(r, Zl)

v2(r, h) = V3(r, h)

0'8z2(r, h) = (1"8z3(r, h)

( ') (') {-Zrfr., (r < 1)
(1"8z1 r, z - (1"8z2 r, z = 0, (r> 1)

Z IX= - - J1(gr)Jig) dg,
r. 0

(O~r<oo).

(l5a)

(15b)

(15c)

(15d)

(16a)
(l6b)

(16c)

·-Oomoinl;!i1

1~i*~Y--J;- Linearly Varying
U SIltar Traction

Domain 2;!it

Fig_ 4. Unit torque in the interior of layered half space.
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To incorporate the notion of the singularity of the stress field in the form of eqns (4) at the
base perimeter of a cylindrical bar of a radius a and length h embedded in the half space; the
applied shear traction in the fundamental solution for Z' = h should be, in place of the linear eqn
(16), in the form

j
_(k + l/2)(k +3/2) r(l- r2)k- (1/2),

0'8:1(r, h) - 0'8:3(r, h) = 7T (r < 1)
0, (r>1)

= _ 2k-(1/2)f(k +1/2) (k + l/2)(k +3/2) r ~-k+(If2)
7T Jo

and other two pertinent conditions are

0'8:I(r, 0) = 0

vl(r, h) = v3(r, h).

(17a)
(17b)

(l7c)

(18a)

(l8b)

Note that, in this case, domain 2 does not exist, and there remain only three constants of
integration, i.e. AI> B1 and B3 to be determined by means of eqns (17c), (18a) and (l8b). In eqn
(17c), r denotes a gamma function.

5. TORSION OF ELASTIC CYLINDER EMBEDDED IN ELASTIC HALF SPACE

The problem of the axially symmetric torsion of an elastic cylindrical bar partially embed­
ded in a layered elastic half space is depicted in Fig. 1. In addition to those previously defined,
the following notations are introduced in this system; h denotes the depth of the bar and also
the depth of the top layer; To denotes the magnitude of the torque applied at the top end of the
bar which is flush with the surface of the half space; and XI> X2 and X3 are cartesian components
of position vector x; thus XI is identical to r for 8 =0, and X3 is identical to z. The top layer
(r> a, 0< z< h) and the bottom layer (z > h) are perfectly bonded on the contact surface
(r> a, z = h). The cylinder is bonded to the half space in the area (r < a, z = h) and along the
surface of the cylinder (r = a, 0~ z ~ h).

Following the approximative scheme similarly used by Muki and Sternberg[6] in the
elastostatic axial load transfer, the system in Fig. I is decomposed into two systems; an
extended half space B as shown in Fig. 2(a) and a fictitious bar B. as shown in Fig. 2(b) with a
shear moduli IL. equal to the difference between the shear moduli of the real bar IL2 and the half
space ILl> Le.

(19)

The extended half space is subjected to a distributed bond torque t(z) which is exerted by
B. on B at X3 =z in a region D in place of the bar. In addition, B is also subjected to end
torques To - T.(O) and T.(h) applied at the terminal cross sections as shown in Fig. 2(a). The
bond torque t(z) and the torque To - T.(O} are assumed to be distributed linearly in the form of
eqn (16a) over their respective cross sections ,":(0 < Z < h} and '"0, while the torque T.(h} in the
singular form of eqn (l7a) over the cross section '"h.

Conversely, the bond torques and end torques are exerted by the extended half space B on
the fictitious bar B., which may be treated as a one-dimensional elastic continuum, for which
the equation of equilibrium is

t(z} =- dT.(z}/dz

and the torque-twist relation of the fictitious bar is

T.(z) = 7TIL. dt/>.(z}/2 dz

where T.(z} and q,.(z) are fictitious torque and angle of twist of the bar respectively.

(20)

(21)
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The governing integral equation can be derived using the following compatibility condition
between B. and the edge of region D as

dc/J.(z)!dz = dvW, z)!dz, (0 ~ z ~ h) (22)

where v(r, z) is the displacement in 0 direction at a point x(r, 0, z) in domain B, and 1- denotes a
value infinitesimally less than unity. It should be mentioned that the original compatibility
condition proposed in Ref. [6], where it was between B. and the corresponding average over a cross
section of region D, was found not accurate enough by the present authors in a separate calculation.
The function v(r, z) can be expressed in the form

v(r, z) = [To - T.(O)]vT(r, z; 0) +T.(h)vT(r, z; h) +f vT(r, z; z')t(z') dz' (23)

where vT(r, z; z') is the fundamental solution derived in the previous section, i.e. the displace­
ment in 0 direction at a point x(r, 8, z) due to a unit torque applied at a depth z' (Fig. 4).
Substitution of eqns (20), (21) and (23) in eqn (22) results in,

2T.(z)!1TIL. = [To - T.(O)]c/Jt(z, 0) + T.(h)c/J~z(z, h) - f c/J ~z(z, z') d~.;;,) dz' (24)

where c/J ~,(z, z') is an influence function defined as

(25)

and presented in the Appendix. It should be noted that this influence function is smooth and
continuous everywhere except at z = z', where the magnitude of the discontinuity according to
eqn (l6a) is equal to 2!1TILJ for 0< z < h. In case of incorporating the stress singularity at the
end of the bar, </> ~·z(z, z') when z = z' =h diverges due to eqn (l7a), thus requires an appropriate
handling in the numerical solution scheme.

Integrating the integrals in eqn (24) by parts, while taking proper account of the dis­
continuity, results in

2T.(z) [J.. +J..] _rh T.(z') aq, ~~(:' z') dz' :: To</> t(z, 0).
17' IL. ILl Jo z (26)

Equation (26) is a Fredholm integral equation of the second kind governing the distribution of
T.(z) along the fictitious bar.

The real bar torque T(z) can be obtained by combining the fictitious torque T.(z) with the
corresponding area integral of the shear stress C10z in the region D of B, i.e.

T(z) = T.(z) +LrC1oz(r, z) dA, (0:5 z :5 h) (27)

while the angle of twist of the real bar taken as equal to that of the fictitious bar, in view of eqn
(22) can be written as

q,.(z) :: v(1, z), (0:5 Z :5 h). (28)

In view of eqn (23), performing appropriate integrations in eqns (27) and (28) leads to,
respectively

T OO) lh T ( ') a7~z(Z, z') d 'T(z)= 070,(Z, + 0 • Z az' z

T o fh T ( ') acho(z, z') d '</>.(z) = O</>T (z, 0) + • z a ' z
o Z

(29)

(30)
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where T~~(Z, Z') and 4>ro(z, Zl) are influence functions defined as

T~z(Z, ZI) =Jr0'9Zr(r. z; z') dA
".

4>10(Z, Zl) - V1(l, z; Zl)

7

(3Ia)

(3Ib)

in which CT9~r(r. z; z') is a shear stress in the fundamental solution depicted in Fig. 4.
Appendix of this paper contains the listing of the influence functions 4>~.(z, z'), T~z(Z, Zl) and

rPro(z, Zl) together with the numerical scheme for integrals involved, which are in the Lipschitz­
Hankel type involving products of Bessel functions.

6. NUMERICAL SOLUTION SCHEME

The solution to the Fredholm integral equation governing To{z) has to resort to an
appropriate numerical method due to the complexity of the kernel arP~z(z, z')/az', which can be
shown to have an integrable logarithamic singularity at z=z'. The solution scheme adopted by
Hopkins and Hamming[9] and Lee and Rogers[lO] in the solution of Volterra integral equations
is employed herein: Dividing the interval of integration into n equal partitions and denoting
each mesh point by %i: j = 1,2,3, .. .,n + 1, with %. = 0 and %11+1 = h, eqn (26) becomes

which is a set of n + I simultaneous equations, the solution of which results in the fictitious
torque To(z) at aU mesh points.

In case of the singularity of the stress field at the base perimeter of the bar, rP~z(h. h)
contains a singular term of the form

1
.. (I M-(l/2)

I:-HW2IJ (I:r)1 (I:) dl: =2(1/2)-A: r - r J (r =1-)
o ~ I ~ k+(3/21 ~ ~ nk +1/2) , (33)

thus there exists in eqn (32) an indeterminate term To(h)4>~z(h. h). As z tends to h, T.(z) shall
approach zero in the form

(34)

In order to handle this situation in the numerical solution to eqn (32), the numerical value of l­
in eqn (33) is increased towards unity gradually until To(h) is sufficiently close to zero and other
essential results become stable. The technique is found to be successful as exemplified in Table
1. Physically, the shear stress along the mantle of the cylindrical bar is directly proportional to
the bond torque, i.e. 0'r8(l, z) ..... t(z); thus with the help of eqns (20) and (34) we can confirm the
singular form of 0'r8(l. z) as eqn (4b).

7. DISCUSSION OF RESULTS AND CONCLUSIONS

The study of Luco[2] was rigorous but restrictive to the case of rigid bars </31 =0). The
problem was governed by a set of two coupled integral equations. which was solved by an
elaborate numerical scheme. Numerical results of the torque-twist angle relationship and the

Table I. ~ample of convergence of proposed solution as , approaches r; hla = 3, iii = 0, and liz = I

r.1- T.(b)/To
T(b)/T

o 3T/16\1.a'+.(0)

0.95 0.081 0.110 1.48

0.99 0.048 0.106 1.47

0.995 0.024 0.100 8.46

0.9975 0.008 0.100 8.45



x P. KAKASUl>HI el a/.

Table 2. JTo/l6/l,a'</>.(O) for rigid bars (Ill =0) in comparison with Luco's results-values in parenthesis
heinl( computed hy Luco's approximate formula, cqn (35)

8, • 1 8, • 0.75 8, • 0.50 8, • 0.25
hla

Proposed Luco 12l Proposed Luco [2) Proposed Luco 12J Proposed I.uco 12J

1 3.51 3.73 2.92 3.08 2,20 2.42 1. 36 1. 73
(3.36) (2.77) (2.18) (1. 59)

2 6.04 6.14 4.80 4.90 3.55 3.64 2.20 2.35
(5.71 ) (4.53) (3.36) (2.18)

3 8.45 8.53 6.60 6.70 4.82 4.84 2.88 2.95
(H.O/) (6,30) (4.53) (2.77)

4 10.84 10.90 8.43 8.48 5.98 6.03 3.44 3.55
(10.42) (8.07) (5.71) (3.36)

Table 3. T(h)/To for rigid bars (Ill = 0) in comparison with Luco's results

8
2

• 1 82 - 0 • 75 8
2

- 0.50 8 - 0.25
h/a

2

Proposed Luco (2J Proposed Luco [2J Proposed Luco (2) Proposed Luco 12l

1 0.24 0.19 0.29 0.24 0.37 0.32 0.56 0.49

2 0.14 0.11 0.18 0.15 0.25 0.21 0.39 0.36

3 0.10 0.08 0.12 0.11 0.19 0.16 0.29 0.29

4 0.07 0.06 0.10 0.09 0.13 0.13 0.24 0.24

torque transfer to the lower layer of the half space was obtained for hla ratio up to 4, and an
approximate formula for the torque-twist angle relationship was proposed as

T 16 3 [3 ]o= 3 J.L3 a 4>.(0) 1+47Tf32hla . (35)

Inside the brackets above, the first term is the solution to the problem of a torque applied on the
surface of a homogeneous elastic half space, and the second term is the torsion of a rigid core
completely embedded in a free-free plate of thickness h. In comparison with the exact results,
this formula is accurate, though by its nature always gives a higher twist angle for a prescribed
To.

The present study is applicable to an elastic bar as well as a rigid one, and governed by a
single integral equation. Thus it is relatively simpler to obtain numerical results for any values
of the three parameters involved (3 .. (32 and hla ratio. The accuracy of the method is shown in
Tables 2 and 3, in which the results are compared with those by Luco[2] for hla =1to 4. It can
be seen that the agreement between two approaches is good and becomes better as the bar
length increases. The latter point is natural due to the assumption in the present approach of the
fictitious bar as a one-dimensional elastic continuum, which should be more true as the bar
length increases. As should be expected, the approximate formula by Luco[2], eqn (35), gives
lowest results in Table 2 excepting for a very short bar (hia = 1).

Tables 4-7 contain numerical results of the torque-twist angle relationship and the torque at
the lower end of the bar for hla ratio as big as 100. Furthermore, these tables show a
comparison of cases with singular and non-singular stress conditions along the base perimeter
of the bar. It can be noted that the effect of the singular stress condition is not so significant,
especially for long bars and when the main concern is on the relationship between the applied
torque To and the angle of twist of the top end of the bar 4>.(0). This type of situation is more
pronounced in the problem of a flexible bar (Tables 6 and 7). It should be mentioned also that
the case of non-singular stress condition involves less computational efforts. As should be
expected, the approximate formula by Luco[2] gives lowest results in Table 4 excepting for a
very short bar (hla :::: 1).
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Table 4. 3ToII6/&,a)~.(O) of cases with singular and non-singular stress conditions along base perimeter of
Ihl' rit:id h:lr (/1 1 •• tll-valucs in parcnthcscs hcint: cUlllpulcd hy I.ucu's apprn~illlalc fnrlllula. clln (J51

8 • 1 8 • 0.75 8
2

• 0.50 8
2

• 0.25
2 2

h/a

Sillllular
Non-

Singular
Non-

Sillllular Non-
Sillllular

Non-
Singular Sillllular Singular Singular

1 3.51 3.46 2.92 2.87 2.20 2.16 1. 36 1. 30
(3.36) (2.77) (2.18) (1. 59)

2 6.04 6.09 4.80 4.84 3.55 3.60 2.20 2.24
(5.71) (4.53) (3.36) (2.18)

3 8.45 8.50 6.60 6.68 4.82 4.91 2.88 3.13
(8.07) (6.30) (4.53) (2.77)

4 10.84 10.90 8.43 8.51 5.98 6.12 3.44 3.74
(10.42) (8.07) (5.71) (3.36)

10 24.88 25.08 18.98 19.23 13.10 13.34 6.96 7.25
(24.56) (18.67) (12.78) (6.89)

20 48.44 48.69 36.65 36.92 24.88 25.10 12.85 13.14
(48.12) (36.34) (24.56) (12.78)

50 119.12 119.41 89.66 90.04 60.22 60.68 30.52 30.96
(118.81) (89.36) (59.90) (30.45)

100 236.93 237.42 178.02 178.56 119.13 119.62 59.97 60.39
(236.62) (177.71) (118.81) (59.90)

Table 5. T(h)/To of cases with singular and non-singular stress conditions along base perimeter of the bar;
/31 =0

8
2

• 1 8
2

• 0.75 8
2

• 0.50 8
2

• 0.25

h/a
Non- Non- Non- Non-

Sinau1ar Sinau1ar Sinau1ar Sillllular S1nau1ar Sillllular Sinaular Sillllular

1 0.24 0.33 0.29 0.37 0.37 0.42 0.56 0.58

2 0.14 0.20 0.18 0.24 0.25 0.28 0.39 0.40

3 0.10 0.15 0.12 0.17 0.19 0.21 0.29 0.31

4 0.07 0.11 0.10 0.14 0.13 0.17 0.24 0.26

10 0.03 0.05 0.04 0.06 0.05 0.08 0.09 0.12

20 0.01 0.02 0.02 0.03 0.03 0.04 0.04 0.06

50 0.004 0.010 0.005 0.014 0.006 0.018 0.010 0.027

100 0.002 0.008 0.002 0.010 0.003 0.011 0.005 0.017

Table 6. 3To/16/&)a)~.(O) of cases with singular and non-singular stress conditions along base perimeter of
the bar; /31 =0.1

8
2

• 1 8
2

• 0.75 8
2

• 0.50 8
2

• 0.25
h/a

No.... No einau1arity No Sinaularity No a inau1aritySinau1ar
Sinau1ar ."bta. exiata. exista,

1 2.47 2.46 1. 91 1.31 0.72

2 2.86 2.86 2.15 1.44 0.73

3 2.96 2.96 2.18 1.47 0.74

4 2.98 2.98 2.22 1.48 0.74

10 3.02 3.02 2.26 1.51 0.75

20 3.02 3.02 2.26 1.51 0.76

SO 3.02 3.02 2.26 1.51 0.76

100 3.02 3.02 2.26 1.51 0.76

9
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Table 7. T(h)jTo of cases with singular and non-singular stress conditions along base perimeter of the bar;
,81=0.1

e•• 1 e•• 0.75 e•• 0.50 e•• 0.25

h/a Non- No & :l.ngularHy No SingularHy No singularHySingular
Singular exists. exiata. exiats.

1 0.19 0.24 0.2f 0.28 0.38

2 0.07 0.10 0.11 0.13 0.15

3 0.03 0.04 0.05 0.06 0.06

4 0.01 0.02 0.02 0.03 0.03

10 0.000 0.000 0.000 0.001 0.001

20 0.000 0.000 0.000 0.000 0.000

50 0.000 0.000 0.000 0.000 0.000

100 0.000 0.000 0.000 0.000 0.000

The significance of the flexibility of the bar can be obviously seen by comparing the results
of the twist angle in Table 6 with those in Tables 2 and 4. In addition, Table 6 shows that an
elastic bar with the length greater than a certain value can be treated as an infinitely long bar.
We may estimate a twist angle for the case of an infinitely long bar (hla = 0:». and a
homogeneous half space ({32 = 1) from a graph in Ref. [4}, by substracting the twist angle due to
the 81. Venant's torsion of the unembedded part of the bar from the result given by the graph.
In doing so for 131::::; 0.1, the value of 3To/l6J.L3a3<f>.(0) is 3.03 comparing with the value 3.02
obtained by the present study for hla = 10 to 100.
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APPENDIX

1nfluence functions
The influence function q, ~z(z, z') defined in eqo (25) can be expressed as follows

o ') I=--_ r~w-g)JM) {(I + "0) [I:' - :1 e-<1='-"
q,Tz(Z, z = 'Il'!Ll(l + JL()JJo H(gh) ,., (:' - z)

-(I,.,,)] +(1_ ) [ -f(2k-,'-z) _~ e-(Uk-'IZ'-,I)]} dg (z: z)
e !LO e (z'- z)

where

H(gh) = (I + /lo - e -2Eh + /lO e-2<k j /0 + /lo)

/lo= ILl//l1 = ,81 1
.

(36)

(37)

(38)



Torsion of a long cylindrical elastic bar

When singular stress condition exists along the base perimeter of the bar,

o ( h)= (k+1I2)(k+3/2)2H12r{k+I/2) rJ1{q)J i t )rk+1/2
~Tz z. 1r/LI{I +/LO) Jo H(~h) k+3/ ~ ~

x [e -Elh-,) - e-E(h+'~ d~. (0 s z< h).

The influence function T~,(Z. z') defined in eqn (3Ia) can be expressed as follows.

11

(39)

o( ') =_2 (~ h 2W {(I + )[lzI - zl e-(1,'-,1- e-El,.,.)] + (I - IL )[e -(12h-,'-,)
Tt, Z. z Jo H{~h)(1 +/LO)~ /LO (Zl _ z) 0

_Iz' - zl e-E(2h-I"-'p]} d~, (z# z1 (40)
(z'-z)

When singular stress condition exists along the base perimeter of the bar.

o HI12 (~ rHI2Ji~)
Tt,(Z. h) =2 (k + 1/2){k + 3/2)r(k + 112) Jo H(~h){1 + /LO) JH3/2W

x [e -E(h-,) - e-E(h+Z~ d~. (O s z s h).

The influence function ~To{Z. z') defined in eqn (3Ib) can be expressed as follows

When singular stress condition exists along the base perimeter of the bar,

~TO{Z. h) =- 2H12{k :~~~~ ~/2)r(k + 1/2)r~-:~;~)<{>JH 3/2W

x [e -E(h-,) +e-Elh+'~ d~. (O s zs h).

(41)

(42)

(43)

Numerical scheme for infinite integrals involved
Infinite integrals appearing in eqns (36) and (39H43) can be put in the Lipschitz-Hankel form [II] by approximating

accurately the common denominator H{~h) by a set of exponential terms as suggested by Chan. Karasudhi and Lee(12).
For examples; for /LO =0.5.

for

/LO= 5.0.
I/H(~h) =1- 0.6647 e-lth +0.4219 e-4th - 0.212 e-6th +0.0549 e-Ith

anf for

1L0 =ct.

It should be noted also that IIH(~h) for /LO= I is identical to unity.
Consequently. the influence functions involve integrals of the form

Eason et al. (11) showed that these integrals are convergent for 'IJ >0 if /L + l' + A>:- I. and for 'IJ =0 if

jL + l' + I> - A> -I for pi' I

IL + v + I > - A>0 for p = I.

(44)

(45)

(46)

(47)

(48&)

(48b)

All individual infinite integrals in the influence functions are convergent according to the above criteria except the term eqn
(33) in the inlluence function .~h, h) which diverges. For the convergent integrals, it is fDODd that the most elIic:ient
numerical scheme is the direct integration by means of the extended Simpson's rule(13]. The numerical values of Bessel
functions with integer orders are computed from approximate closed form formulae. while those with fractional orders
from an integral formula(13]. The results, obtained by using 70 (instead of 00) as the upper limit and 0.1 as the increment of
the integration, agree very closely with those tabulated in Ref.[II).


